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Abstract.—We describe a novel model and algorithm for simultaneously estimating multiple molecular sequence alignments
and the phylogenetic trees that relate the sequences. Unlike current techniques that base phylogeny estimates on a single
estimate of the alignment, we take alignment uncertainty into account by considering all possible alignments. Furthermore,
because the alignment and phylogeny are constructed simultaneously, a guide tree is not needed. This sidesteps the problem
in which alignments created by progressive alignment are biased toward the guide tree used to generate them. Joint estimation
also allows us to model rate variation between sites when estimating the alignment and to use the evidence in shared
insertion/deletions (indels) to group sister taxa in the phylogeny. Our indel model makes use of affine gap penalties and
considers indels of multiple letters. We make the simplifying assumption that the indel process is identical on all branches.
As a result, the probability of a gap is independent of branch length. We use a Markov chain Monte Carlo (MCMC)
method to sample from the posterior of the joint model, estimating the most probable alignment and tree and their support
simultaneously. We describe a new MCMC transition kernel that improves our algorithm’s mixing efficiency, allowing
the MCMC chains to converge even when started from arbitrary alignments. Our software implementation can estimate
alignment uncertainty and we describe a method for summarizing this uncertainty in a single plot. [Alignment bias; Bayesian
phylogenetics; indel models; MCMC; statistical alignment; Tree of Life.]

Phylogenetic reconstruction using molecular se-
quences has become an invaluable tool in the study of
evolution, driven by the growing wealth of available
genetic information and the development of statistical
methods for handling molecular data. Most modern sta-
tistical methods for estimating phylogenies from molec-
ular sequence data rely on multiple sequence alignments
that arrange the raw sequence data in a matrix to spec-
ify which residues are homologous (Holder and Lewis,
2003). However, this alignment is an inferred property
of the sequences and cannot be directly observed, so
the alignment must also be estimated. Current methods
for phylogenetic reconstruction separate alignment re-
construction from phylogeny reconstruction. First, the
alignment is estimated from the raw sequence data; some
attempt must then be made to identify and remove am-
biguous regions or handle them in some other appro-
priate manner (Lutzoni et al., 2000). After a full or par-
tial alignment has been constructed, the phylogeny is
then estimated from the alignment. This sequential ap-
proach works well when the alignment is well resolved,
but can produce spurious or no results when the align-
ment contains uncertain regions (Lutzoni et al., 2000).
An improved method would be helpful in reconstruct-
ing phylogenies of distantly related sequences because
such sequences often have large ambiguous regions. To
this end, we propose a model and algorithm that allows
the estimation of the alignment and phylogeny simulta-
neously from unaligned sequence data. We operate in a
Bayesian framework and use Markov chain Monte Carlo
(MCMC) to sample from the joint posterior distribution
of alignments and phylogenies given the simultaneous
model.

Currently accepted methods for phylogeny recon-
struction, such as maximum parsimony, maximum like-
lihood, and Bayesian estimation, use as input a single
estimate of the alignment that is assumed to be correct.
This assumption can lead to exaggerated support for in-
ferred phylogenies if the alignment contains ambiguous

regions, because near-optimal alignments are not taken
into account (Lutzoni et al., 2000). In addition, the use
of alignments constructed using progressive alignment
methods can lead to inferred phylogenies that are bi-
ased towards the fixed guide tree assumed in gener-
ating the alignment (Lake, 1991; Thorne and Kishino,
1992; Sinsheimer, 1994). This bias can be extreme; our
results include an example where the posterior proba-
bility for a particular partition of taxa rises from 0.553 to
0.998 when alignment uncertainty is ignored. Although
there exist some methods for constructing multiple align-
ments without the use of a guide tree (Notredame et al.,
2000), employing a tree estimate is responsible for sev-
eral improvements in the accuracy of alignment software
(Thompson et al., 1994). Thus, the availability of the phy-
logenetic tree during alignment construction leads to im-
proved alignments, but accurate estimates of the tree are
unavailable during the alignment construction phase of
sequential estimation.

One common technique for dealing with this prob-
lem is to remove ambiguously aligned regions from the
alignment before submitting the alignment to the phylo-
genetic reconstruction procedure. Simply removing am-
biguous regions can result in the loss of a large fraction
of informative sites (Lutzoni et al., 2000). One technique
that mitigates this problem is to code information about
ambiguity into the alignment itself (Geiger, 2002). A sim-
ple method to encode this information is to split ambigu-
ous columns into groups of residues in which homology
is unambiguous (Baldauf et al., 1996). Residues from
these groups can then be placed in separate columns.
This preserves unambiguous positional homology infor-
mation within groups of taxa, while deleting ambigu-
ous information about positional homology between
groups. However, the process of determining which re-
gions of the alignment are ambiguous is ad hoc and can
be subjective.

Researchers have developed a number of techniques
to make better use of the information in regions of
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ambiguous alignment for phylogenetic reconstruction
(Lee, 2001). One technique, known as elision, involves
concatenating a set of near-optimal alignments into a
larger alignment and then using the larger alignment
as the basis for traditional phylogeny reconstruction
techniques (Wheeler et al., 1995). The elision method
weighs information about positional homology accord-
ing to the fraction of near-optimal alignments that in-
clude the information. This allows the use of ambiguous
positional homology information, as well as enabling
the use of unambiguous information in ambiguous re-
gions of the alignment. However, in this method, all
near-optimal alignments are treated equally instead of
being weighted according to alignment quality. Equal
weighting becomes problematic if one wishes to include
in the elision a large number of alignments, because high-
quality alignments will be treated the same as medium
quality alignments.

Another approach to using ambiguous regions, known
as optimization alignment, involves simultaneous esti-
mation of alignments and phylogenies within a parsi-
mony framework. Instead of using a fixed alignment,
Wheeler (1996) simultaneously estimates ancestral se-
quences and their pairwise alignment to neighboring
sequences by minimizing the number of mutations, in-
cluding both substitutions, and, optionally, insertion/
deletion (indel) events. However, consideration of all
possible internal sequences is extremely computation-
ally expensive and so approximations are used in all
proposed algorithms. For example, Lutzoni et al. (2000)
and Wheeler (1999) have both independently developed
a fixed-states algorithm in which only sequences that are
observed at leaf nodes are considered as possibilities for
sequences at internal nodes. This assumption is biolog-
ically unrealistic for deep divergences where alignment
is often crucial. Because of the limitations of this method,
Lutzoni et al. (2000) employ this method only when con-
sidering regions of ambiguous alignment and use stan-
dard techniques on the rest of the alignment. Research
into further improvements in both the speed and the
quality of optimization alignment continues (Wheeler,
2003). One problem that optimization alignment faces is
that measures of uncertainty in both inferred alignments
and inferred phylogenies are difficult to obtain. Because
columns in the alignment are no longer independent,
standard bootstrap techniques cannot be used, and there
do not appear to be other well-motivated techniques to
take the bootstrap’s place. Although sensitivity analysis
can reveal uncertainty arising from unknown optimiza-
tion parameter values, it cannot characterize uncertainty
in the tree and alignment given fixed parameter values
and cannot reveal uncertainty in the tree resulting from
uncertainty in the alignment (or vice versa). In addition,
optimization alignment research has focused on maxi-
mum parsimony, although maximum likelihood analy-
sis is possible as well. The likelihood-based approaches
that we take in this paper are beneficial because they
are model based, offer better use of phylogenetic in-
formation, and are statistically consistent (Felsenstein,
2003).

One approach that may resolve the above difficulties
is to estimate alignment and phylogeny simultaneously
in a Bayesian framework and assess confidence on in-
ferred alignments and phylogenies using posterior prob-
abilities. This joint estimation approach allows one to
consider the myriad of near-optimal alignments when
estimating phylogenies. These alignments are naturally
weighted by their posterior probabilities that provide
well-motivated and objective estimates of which parts
of the alignment are reliable, as well as naturally taking
into account information in ambiguous regions of the
alignment. Because joint estimation requires no exter-
nal guide tree, it addresses the problem that alignments
constructed through progressive alignment are biased
towards the guide tree (Lake, 1991). Instead of a fixed
guide tree, a random internal estimate is constantly avail-
able. Joint estimation can safely make use of informa-
tion from this tree when modeling the alignment without
bias.

Joint estimation allows for more accurate substitution
and indel models than is possible with sequential meth-
ods. Because a random tree estimate is available dur-
ing alignment reconstruction, joint estimation enables
the use of models that do not overcount single substi-
tutions or indels shared between multiple taxa by com-
mon descent. For the substitution model, one is able to
use stochastic models of substitution along a tree for
alignment reconstruction as well as phylogeny recon-
struction. Joint estimation can also take advantage of
extended substitution models in scoring the alignment,
such as models that take into account rate variation be-
tween sites. This contrasts with sequential methods, in
which these models are not used during the alignment
construction phase because the tree is not yet known.
Further, joint estimation allows one to accurately model
indels and to use information in shared indels to group
taxa on the tree. Because the tree and the alignment
are estimated simultaneously, the joint model can take
into account the possibility that shared indels in sis-
ter taxa are homologous and result from a single indel
event.

To sample from the joint posterior distribution of
alignments and phylogenies, an indel model and an
alignment-aware MCMC sampling method are neces-
sary in addition to the traditional phylogenetic substi-
tution model. The Thorne et al. (1991; TKF1) indel model
is a reversible model for pairwise alignment and has been
used as the basis for sampling from the posterior distri-
bution of alignments conditional on a fixed tree (Holmes
and Bruno, 2001; Lunter et al., 2002). The TKF1 model
has the drawback of assuming that indels are always of
unit length. When estimating alignment and phylogeny
simultaneously, this is problematic not only because of
the skewed gap distribution, but also because the model
treats long indels that are shared between multiple taxa
as multiple shared indels. This exaggerates the number
of shared characters and, because indels are rare events,
could significantly skew the posterior tree distribution.
The Thorne et al. (1992; TKF2) alignment model extends
the TKF1 model by allowing insertions and deletions
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of sequence fragments containing several letters. How-
ever, the TKF2 model makes the assumption that
inserted fragments are indivisible and that indels there-
fore are never nested or overlapping (Metzler, 2003).
Thus, the TKF2 model forbids some possible positional
homologies.

In developing an indel model, we make the simpli-
fying assumption that indels occur on each branch of
the tree in a manner independent of branch length.
This allows us to model the alignment distributions
on all branches using a single symmetrical pair-hidden
Markov model (pair-HMM). The pair-HMM that we em-
ploy improves on the TKF1 model in allowing indels of
multiple residues, and we improve on the TKF2 model by
allowing for all homology structures. One consequence
of our simplifying assumption is that we lose the nice
TKF property of placing indels preferentially on longer
branches. One way to side-step this loss would be to
place a TKF2 model on each branch of the tree, but link
alignments from adjacent branches through their shared
sequence length instead of allowing fragment bound-
aries to be shared across branches. Despite these dif-
ferences, our proposed model shares many properties
with the TKF models. Indels occur independently on
each branch, conditional upon model parameters and
the lengths of sequences at internal nodes. In addition,
insertions and deletions are equally likely and sequence
lengths do not have a tendency to grow or shrink over
time.

MCMC has previously been used to sample from the
posterior distribution of model parameters and phyloge-
nies conditional on a fixed alignment (Mau and Newton,
1997; Yang and Rannala, 1997; Li et al., 2000) or to sam-
ple from the posterior distribution of alignments condi-
tional upon a fixed phylogeny and unaligned sequences
(Allison and Wallace, 1994; Holmes and Bruno, 2001).
Sampling from the posterior of a joint model requires
combining these two approaches to sample from the
posterior distribution of the alignment, phylogeny, and
model parameters given only the unaligned sequence
data. This requires the construction of new MCMC tran-
sition kernels to resample the topology and the align-
ment in tandem.

In this paper, we describe a novel approach to jointly
estimating alignment and phylogeny in a Bayesian
framework. In Methods, we begin by introducing ex-
tensions to traditional phylogenetic models to include a
model of multiple alignments. We follow Holmes and
Bruno (2001) in modeling pairwise alignments along
each branch of the tree and in recording the presence and
absence of characters at internal nodes. We introduce a
new indel model that allows indels of multiple residues
and also allows indels to nest or overlap if they lie on sep-
arate branches. We then describe our method of sampling
from the posterior distribution using MCMC. We extend
the approach of Holmes and Bruno (2001) by introduc-
ing novel MCMC transition kernels to sample topologies
together with alignments and to improve the sampling
of alignments. Finally, we describe methods of summa-
rizing the posterior alignment distribution. Our methods

enable researchers to conveniently identify which parts
of the alignment are ambiguous and how much uncer-
tainty there is in the exact location of gaps. In Results,
we apply the joint model and estimation algorithm to
the biological problem of inferring the early branching
order on the Tree of Life. We analyze two data sets with
a significant degree of sequence divergence: a 5S ribo-
somal RNA (rRNA) data set and an elongation factor
1α/Tu (EF-1α/Tu) data set. Because the sequences in-
volved have diverged significantly, the alignments have
ambiguous regions and the phylogenetic signal is not
strong. By using joint Bayesian estimation, we hope to
enhance this signal with indel information and informa-
tion in ambiguous regions while simultaneously avoid-
ing bias and overconfidence in inferred topologies. We
conclude, in Remarks, with a brief discussion of merits
and shortfalls of joint estimation and highlight several
areas of future research.

METHODS

We start with the observed data Y consisting of a set of
n homologous molecular sequences. Let the sequences in
Y be indexed by i = 1, . . . , n, with corresponding lengths
|Yi | and let the j th element of Yi be denoted Yi [ j]. Ele-
ment Yi [ j] takes on values, called letters, from a set α of
possible values called an alphabet. For example, if the se-
quences are protein sequences, then α is the set of amino
acids, whereas if the sequences are DNA sequences, then
α is the set of DNA nucleotides {A, G, C, T}.

We aim to estimate the unobserved evolutionary re-
lationship among the sequences and the parameters of
the evolutionary process that generated the sequences.
The evolutionary relationship is specified by a multiple
alignment A and a phylogenetic tree that relates the n
molecular sequences. The multiple alignment, although
separable from the data Y, specifies how the data are ar-
ranged in an aligned data matrix f. This matrix identifies
which letters from the sequences are homologous to each
other by arranging homologous letters into the same col-
umn. We define C to be the unknown number of columns
in this matrix. Each column represents a homologous site
and contains one letter, or possibly a missing value, per
sequence. This process will be described in more detail
later. The phylogenetic tree can be broken down into its
unrooted topology τ and branch lengths T. The topology
τ is an acyclic graph in which all nodes have either one
neighbor or three neighbors. The tree has n leaves, each
of which corresponds to one of the n observed sequences.
Sequences at the internal nodes correspond to ancestral
sequences and can be estimated but are not observed.
The total number of nodes in τ is N = 2n − 2 and the
number of branches is B = 2n − 3.

The evolutionary process parameters include both the
substitution process parameters Θ and the indel process
parametersΛ. Substitution parametersΘ contain the sta-
tionary frequencies of each letter in the alphabet and the
transition rates between the letters, as well as parameters
to describe among-site rate heterogeneity. Indel param-
eters Λ = (δ, ε, ζ ), where δ is the probability for an indel
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along a branch, ε characterizes the geometric length dis-
tribution of the indels, and ζ characterizes the geomet-
ric length distribution of the alignment. Taken all to-
gether, the entire state space Ω is composed of points
ω = (Y, A, τ, T, Θ, Λ).

Probabilistic Model

Traditionally, phylogenetic reconstruction has implic-
itly conditioned on the alignment A when estimating the
tree (τ, T) (Holder and Lewis, 2003). In order to contrast
this traditional conditioning with the approach we use in
this paper, we will make the conditioning explicit. This
leads to the probability expression

P(Y, τ, T, Θ | A) = P(Y | τ, T, Θ, A) × P(τ, T |Θ, A)

× P(Θ | A), (1)

where, following a common abuse of notation, we write
P(X) to represent P(X = x) for any random variable X tak-
ing on a realized constant x. The first term in Equation 1,
P(Y | τ, T, Θ, A), is the model likelihood and is given by
the substitution model. Priors on the trees and substi-
tution parameters are usually chosen to be mutually in-
dependent and independent of the implied alignment,
leading to the reduced expression

P(Y, τ, T, Θ | A) = P(Y | τ, T, Θ, A) × P(τ, T)

× P(Θ). (2)

In contrast, allowing the alignment to vary results in the
following expression

P(Y, A, τ, T, Θ, Λ) = P(Y | A, τ, T, Θ, Λ)

× P(A | τ, T, Θ, Λ) × P(τ, T |Θ, Λ)

× P(Θ |Λ) × P(Λ). (3)

Similar to before, we choose priors on the tree and sub-
stitution parameters Θ that are mutually independent
and independent of the alignment. We also assume that
the tree and the substitution parameters are independent
of the indel parameters Λ. The prior that we assume on
the alignment depends on the topology τ and the indel
parameters, but not on the branch lengths T. This leads
to the reduced expression

P(Y, A, τ, T, Θ, Λ) = P(Y | A, τ, T, Θ) × P(A | τ, Λ)

× P(τ, T) × P(Θ) × P(Λ). (4)

Notably, Equation 4 is identical to Equation 2 except
for the inclusion of the term P(A | τ, Λ), which is the
prior on alignments, and the term P(Λ), which is the
prior on the indel model. Thus, our likelihood may be
based on traditional substitution models such as re-
versible, continuous-time Markov chains, as described
in the next section. We develop a prior on alignments

based on a biologically realistic model of indel events.
For the prior on trees, we use a Uniform prior across the
finite number of topologies. We assume an Exponential
prior with common mean µ on the length of each branch.
We further assume that the hyperparameter µ is also ex-
ponentially distributed (Suchard et al., 2001).

Substitution model.—The probability that the substi-
tution process results in the observed letters in the
aligned data matrix f is given by the likelihood P(Y |
A, τ, T, Θ, Λ). To express the likelihood, we must accom-
plish two tasks. First, we must describe how the align-
ment A groups the data Y into columns of homologous
letters in f. Second, we must specify the probabilistic
model imposed on the columns of f.

Matrix f is constructed from A and Y and consists of
rows indexed by i = 1, . . . , N and columns indexed by
c = 1, . . . , C . The letters in row i all come from sequence
i and must occur in order. Matrix f represents the hy-
pothesis that the letters observed in each column c are
all descended from a single residue in the common an-
cestor. If the value fic is missing because no letter of
sequence i corresponds to position c, we fill the entry
with ‘−’, denoting a gap. Matrix f includes sequences at
internal nodes using Felsenstein wildcards. Felsenstein
wildcards are represented by ‘�’ and signify residues that
are present but unobserved. To specify how A arranges
the letters of Y into f, we introduce the matrix M(A) with
the same dimensions as f such that Mic is the index of the
letter in sequence i that is identified with c. Specifically,
if sequence i is a leaf sequence, we have

fic = Yi [Mic]. (5)

If a column c has no letter in sequence i , then Mic =
‘−’ and we define Yi [‘−’] = ‘−’. Figure 1 illustrates this
formulation for a four-taxon example. One sequence has
length three and three sequences have length four. The
unobserved sequences at the two internal nodes are also
of length four in this example.

To specify the likelihood, we recall that each col-
umn in f identifies which letters in each leaf sequence

Y M(A) f
Y1 = (A, T, T, C) 1 2 – 3 4 A T – T C
Y2 = (A, T, T, G) 1 2 – 3 4 A T – T G
Y3 = (T, C, T, G) – 1 2 3 4 – T C T G
Y4 = (T, C, T) – 1 2 3 – – T C T –

1 2 – 3 4 � � – � �
– 1 2 3 4 – � � � �

FIGURE 1. Construction of aligned data matrix f from data Y and
alignment A. The first column shows some example data consisting
of unaligned sequences of various lengths. The second column shows
M(A), a matrix that parameterizes the multiple alignment A by speci-
fying where gaps appear in the aligned data matrix and which letters
of Y appear in each column. Sequences at internal nodes are included
in the multiple alignment. The last column shows f, constructed by
combining Y and M(A). Letters that are present at internal sequences
are unobserved and are drawn as Felsenstein wildcards. Whereas the
alignment is separable from the data, as shown in column 2, the aligned
data matrix is not.
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are homologous, descending from the same ancestral
residue at the unobserved root node. Assuming that evo-
lution is independent across columns in f, the tuples of
letters at the leaf nodes within a column are realizations
from a multinomial distribution that depends on τ , T,
andΘ (Goldman, 1993) and is generated by the following
stochastic process. The ancestral letter at the root node is
drawn from a distributionγ. Evolution then occurs inde-
pendently along each branch according to a continuous-
time Markov process (Lange, 1997). We consider only
reversible Markov models and use the equilibrium dis-
tribution for the Markov process as the root distribu-
tion γ. This makes the location of the root unidentifiable
(Felsenstein, 1981), so we use unrooted trees throughout
this paper.

Assuming independence across columns of f, the full
likelihood is given by multiplying the column likeli-
hoods together. We use the peeling algorithm introduced
by Felsenstein (1981) to calculate the column likelihoods,
easing the computational burden for large numbers of
taxa. In the peeling algorithm, both Felsenstein wild-
cards and gaps are similarly treated as missing data and
summed out. This behavior relies on the rule that the
same residue cannot be deleted and reinserted, so that
each column represents only one homologous feature.
As a consequence, calculating the multinomial likelihood
for the observed leaf letter tuples is unaffected by the
presence or absence of gaps. This allows the separation
of the substitution and indel processes into the model
likelihood and alignment prior, respectively.

Gap model.—In the above description, the multiple se-
quence alignment A specifically includes information
about the alignment of sequences at all nodes on the tree,
including sequences at internal nodes. However, the data
Y specifies the letters only for sequences at leaf nodes, as
shown in Figure 1. Because sequences at internal nodes
are included in the alignment, given a topology τ , A
can be represented as a tuple of pairwise alignments
(A(1), . . . A(B)) along each branch in τ , as illustrated in
Figure 2a. The pairwise alignment along each branch
specifies the homology of the sequences at either end
of the branch. This convenient representation allows us
to build up a distribution on A from a distribution ν on
pairwise alignments generated from a pair-HMM with
parameters Λ. Including the alignment states for internal
nodes also specifies on which branch each indel occurs
and determines its length and position.

To construct the distribution on A from a distribution ν
on pairwise alignments, we first note that multiple pair-
wise alignments on adjacent branches cannot be com-
pletely independent because the alignments specify the
length of the sequence at the node they share. However,
after leaving the shared node, we assume evolution along
each branch is then independent. Thus, pairwise align-
ments on a topology are conditionally independent given
each alignment’s neighbors. Arbitrarily choosing any
branch alignment as the root alignment, we can construct
a directed acyclic graph (DAG) to represent these depen-
dencies (Fig. 2b). The DAG defines a parent branch ρ(b)
for every branch b. Labeling the root branch alignment

FIGURE 2. Pairwise alignments on a 4-taxon tree. (a) Each branch
of the tree is labeled with the alignment along that branch. (b) Arbi-
trarily choosing the branch leading to taxon 1 as the root results in a
directed acyclic graph (DAG) representation of dependence between
the branches.

as 1 and applying standard conditioning arguments on
DAGs yields

P(A | τ, Λ) = P(A(1) |Λ)
B∏

b=2

P
(

A(b) | A(ρ(b)), Λ
)
. (6)

We simplify Equation 6 by recalling that dependence
between neighboring alignments exists only through the
sequence length at their shared node. We designate the
node in τ shared by the branches b and ρ(b) as n(b) and
we designate the length that is ascribed to the sequence at
node n(b) by A(b) as |A(b)

n(b)|. This results in the expression

P(A | τ, Λ) = P
(

A(1) |Λ) B∏
b=2

P
(

A(b)
∣∣∣∣∣A(b)

n(b)

∣∣ = ∣∣a (ρ(b))
n(b)

∣∣, Λ)
,

(7)

where a (ρ(b))
n(b) is the realized value of random variable

A(ρ(b))
n(b) . The probabilities in Equation 7 now each depend

only on the marginal distribution of one pairwise align-
ment. We can therefore choose a pairwise alignment dis-
tribution for each term. Given this freedom, we elect to
use the same distribution ν for all terms, yielding

P(A | τ, Λ)

= Pν

(
A(1)) B∏

b=2

Pν

(
A(b)

∣∣∣∣∣A(b)
n(b)

∣∣ = ∣∣a (ρ(b))
n(b)

∣∣)

= Pν

(
A(1)) B∏

b=2

Pν

(
A(b)

) × 1
{∣∣A(b)

n(b)

∣∣ = ∣∣a (ρ(b))
n(b)

∣∣}
Pν

(∣∣A(b)
n(b)

∣∣ = ∣∣a (ρ(b))
n(b)

∣∣) , (8)

where 1{·} is an indicator function.
We note that the pairwise alignment distribution ν in-

duces a length distribution on each of the two sequences
at the alignment’s ends. We restrict ourselves to distribu-
tions ν where these two length distributions are identi-
cal and label the single length distribution that results as
φ. Multiplying all the indicator functions in Equation 8
together, we get an indicator function on a set, S(τ ), in
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which all pairwise alignments referring to the same spe-
cific node in τ ascribe the same sequence length to it.
Given any multiple alignment A ∈ S(τ ), we simply refer
to the length of the sequence at a node i as |Ai | with re-
alized value |ai |, since all pairwise alignments agree on
its length. This simplification yields

P (A | τ, Λ) = Pν

(
A(1)) B∏

b=2

Pν

(
A(b)

)
φ
(|an(b)|

) × 1S(τ ). (9)

Each internal node has three branches connected to it and
the alignments on two of the branches condition on the
alignment on the remaining parent branch in the DAG.
Therefore, for each internal node i , the term φ(|ai |) oc-
curs twice in the denominator, resulting in the following
expression

P (A|τ, Λ) =
∏B

b=1 Pν

(
A(b)

)
∏

i∈I φ
(|ai |

)2 × 1S(τ ), (10)

where I is the set of internal nodes in τ . Given the in-
sensitivity of Equation 10 to relabeling and choosing a
different root node, it is clear that Equation 10 is inde-
pendent of the choice of root alignment in the DAG.

It is impractical in an MCMC algorithm to directly
sample from the full conditional posterior distribution
of alignments when Equation 10 is used as the prior on
alignments. To overcome this difficulty, we introduce a
similar, but more convenient, alignment prior in order to
create an approximate posterior distribution from which
it is practical to use Gibbs sampling. We then use this
modified posterior distribution as a proposal distribu-
tion in a Metropolis-Hastings (MH) transition kernel.
Note that Equation 10 is not proportional to

∏
P(A(b))

because the denominator depends on A. Thus, we con-
sider the following prior distribution

P(A | τ, Λ) = 1
K

×
B∏

b=1

Pν

(
A(b)) × 1S(τ ), (11)

where the new normalizing constant K does not depend
on A. Although we have not specified K explicitly, we
can Gibbs sample from the modified posterior using dy-
namic programming (DP) when Equation 11 is used as
the alignment prior. As described in the Appendix, we
provide DP algorithms to sample from the modified pos-
terior distribution of one, three, or five adjacent branch
alignments conditional on all other parameters being
fixed. When resampling only one branch at a time, how-
ever, the lengths |ai | remain constant and the acceptance
probability for this proposal is always 1. However, when
resampling three or five adjacent alignments, the lengths
of the sequences at the internal nodes may change and
we must use the full MH methodology.

We use a pair-HMM to specify the distribution on
pairwise alignments. Our pair-HMM depends on three

FIGURE 3. Hidden Markov model for pairwise alignments. The
start and end states of the model are not shown. Every state emits
(+) or does not emit (−) a residue in each of the two sequences. After
a match (+/+) or a gap (+/− or −/+) ends, the chain returns to the
silent state in the center. From there, a gap in either sequence opens with
probability δ. Existing gaps are extended with probability ε, resulting
in geometrically distributed gap lengths with mean length 1/(1 − ε).
Transition probabilities shown are conditional on not moving to the end
state. The silent state is shown here for clarity, but it can be removed,
resulting in transitions only between nonsilent states.

parameters, δ, ε, and ζ , and is depicted in Figure 3. Pa-
rameter ζ is the probability of transitioning from any
state to the end state. Conditional on not transitioning
to the end state, the parameter δ refers to the proba-
bility of an indel in either sequence, while the param-
eter ε refers to the probability of extending an existing
gap. Gap lengths are geometrically distributed in this
model with mean length 1/(1 − ε). Our pair-HMM leads
to a model with affine gap penalties (Waterman, 1995),
because the log probability of a single indel of length
l is log P = [log(1 − ε) − log ε + log δ] + log ε × l, condi-
tional on not transitioning to the end state.

To complete the description of the pair-HMM, we con-
struct priors on its parameters. Because the posterior con-
ditions on the known sequence lengths at the leaf nodes,
the posterior is insensitive to reasonable changes in ζ . As
a result, we fix ζ = 1/1000 for our examples. In data sets
with substantially longer sequences, smaller values of ζ
may be appropriate. We assume a Double-Exponential
distribution with mean −6 and standard deviation 0.5
on the approximate log odds of δ. This approximation
results because δ’s range in the pair-HMM is (0, 1/2) in-
stead of the unit-interval. The Double-Exponential dis-
tribution possesses longer tails than the Normal distri-
bution and is, therefore, less informative. For ε, we note
that indels must contain at least one residue and assume
an Exponential distribution with mean = 5 on the ex-
pected length of the remaining residues. Prior medians
for δ and ε are similar to estimates obtained from several
independent data sets.
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Posterior Sampling via MCMC

We sample from our model posterior P(A, τ, T,
Θ, Λ|Y) using MCMC. Our MCMC algorithm makes use
of a number of reversible transition kernels and attempts
to sample from every model parameter at least once dur-
ing each iteration. The algorithm we propose employs
a random-scan line (Liu et al., 1995) Metropolis-within-
Gibbs (Tierney, 1994) approach. Specifically, we update
each branch length, each pairwise branch alignment, and
the sequence length and alignment at each internal node
at least once each iteration. To update the topology, we
propose a nearest-neighbor interchange (NNI) (Swofford
et al., 1996) move across each internal branch at least once
per iteration. Substitution parameters and hyperparam-
eters are jointly sampled a Poisson number of times, with
mean 1 + B/3, where B is the number of branches. Thus,
the substitution parameters are resampled after roughly
three branch alignments have been resampled. Indel pa-
rameters are jointly sampled a Poisson number of times,
with mean 1 + 2B. Indel parameters are resampled more
frequently than substitution parameters, reflecting the
slightly slower mixing of the indel parameters. All pro-
posals are executed in a random order. Random scanning
improves mixing compared to a fixed order of proposals
(Liu, 2001).

The proposals for sampling from branch lengths,
substitution parameters, and indel parameters are
straightforward. We employ MH updates using Gaus-
sian proposal densities. For substitution parameters and
external branch lengths, these proposals are reflected
about their boundaries. If a negative internal branch
length is proposed, this induces an NNI across that
branch (Suchard et al., 2003b), resulting also in a topol-
ogy update. Both the alignment and the topology require
more complicated proposal distributions. In both cases,
DP is used to consider an exponential number of possible
states in polynomial time.

Topology sampling.—The topology τ is updated
through a number of MH steps, each of which alters
only part of the topology. Each internal branch of the
tree is connected to four subtrees. Interchanging the four
subtrees produces three possible topologies: the original
topology and two alternatives. However, after an NNI
topology change, the five pairwise alignments along the
main branch and the four connected branches become
undefined. This results because it may not be possible
to maintain the pairwise alignment of all pairs of nodes
on the 4-taxon subtree without violating the rule that the
same residue cannot be deleted and reinserted. To solve
this problem, we first integrate over all possible values of
the five affected pairwise alignments given each topol-
ogy, subject to the constraint that alignments between
leaf nodes on the 4-taxon subtree around the branch do
not change. In doing so, we marginalize from the state-
space alignment information that may conflict with a
new topology. Once a new topology is chosen, we rein-
troduce information consistent with this topology by re-
sampling from the alignments over which we integrated.
We refer to this integration and subsequent resampling as

5-way sampling. Given the constraint, we need to con-
sider only the presence and absence of residues at the
two internal nodes on the 4-taxon subtree. The resulting
summation is a one-dimensional (1D) DP problem. We
can then compute the partially marginalized probabili-
ties of the three possible topologies based on the likeli-
hood of each topology and the sum of the priors for all
realizations of the five alignments. For our proposal dis-
tribution, we first choose between the topologies in pro-
portion to their probability. After a topology is chosen,
the internal nodes are resampled from the DP matrix for
that topology. Note that the alignment A and the topol-
ogy τ are both resampled after this step, although the
alignments of leaf taxa to each other do not change.

This proposal distribution does not exactly match the
target distribution, because our DP step uses (11) as the
gap prior P(A | τ, Λ). We control for the mismatch by
rejection sampling in an MH step. Let n1 and n2 be the
nodes at the ends of branch b across which the NNI move
is proposed. Further, let 
(0)

n1
= |a (b)

n1
| and 
(0)

n2
= |a (b)

n2
| be

the lengths of sequences ascribed to n1 and n2 before the
proposal and let 
(1)

n1
and 
(1)

n2
be the corresponding lengths

after the NNI and alignment resampling. Then, the MH
acceptance probability (see Appendix) is

min
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}

. (12)

Unless the sequence lengths are extremely short, φ varies
slowly with length. Thus, unless the difference between
the lengths before and after resampling is large, the nu-
merator and denominator will be very similar and the
acceptance probability will be close to 1.

Alignment sampling.—Holmes and Bruno (2001) devel-
oped two MCMC transition kernels to resample align-
ments. When both moves are employed, the resulting
chains are ergodic. The first move is to resample a single
pairwise alignment along a branch, leaving other align-
ments constant. The second move resamples three pair-
wise alignments on the branches of a 3-taxon subtree,
conditional on the implied pairwise alignments between
sequences at the leaf nodes being fixed. This effectively
resamples the presence or absence of the sequence at the
internal node in each column of the alignment. Both of
these updates can be accomplished through DP and are
of computational orders O(C2) and O(C) respectively.

Using only the two Holmes and Bruno (2001) updates
can result in inefficient MCMC mixing in some circum-
stances. On a 3-taxon subtree, if a residue is present in
two leaf sequences but missing in the third, then moving
between aligned and unaligned states requires move-
ment through an intermediate state where the residues
are unaligned, but one of them is present at the central
node. This intermediate state contains an extra indel over
the unaligned state and two extra indels over the aligned
state (Fig. 4), resulting in slow mixing between these two
states. As a consequence, MCMC chains must be run for
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FIGURE 4. Unlikely intermediate results in inefficient mixing. Here
we assume that only the two transition kernels of Holmes and Bruno
(2001) are available. If two characters present in two sister taxa are not
present in the third taxon (a), then in order to reach a state where they
are aligned (c), one of the characters must become present at the inter-
nal node (b). Only then can the other feature be aligned to it. However,
this path introduces an unnecessary indel, which means that the inter-
mediate state (b) is less likely than either (a) or (c). Thus, transitions
between (a) and (c) will be inefficient.

much longer times to assess questionable alignment or
unalignment rather than to assess other uncertainties,
such as gap positions.

We first note that simultaneously resampling the en-
tire 3-way alignment solves this difficulty, resulting in
greatly increased mixing (Jensen and Hein, in press).
However, this is an extremely expensive operation at
O(C3). In addition, the amount of computer memory
needed for this operation makes it difficult to analyze
sequences of even medium length.

We describe a method by which the mixing problem
can be alleviated and some of the benefit of sampling
the entire 3-way alignment can be gained, at the cost of
only an O(C2) algorithm. Notably, the alignment along a
branch and the sequence at an internal node at one end
of the branch are resampled in the same step, decreasing
coupling between adjacent points in the MCMC chain
(Roberts and Sahu, 1997). The transition kernel that we
propose consists of sampling from the entire 3-way align-
ment subject to the constraint that the alignment of two
of the three leaf sequences is held constant, including
the ordering of the columns that are not strictly ordered.
When using DP to draw samples, 3-way alignments cor-
respond to paths through a cubic DP matrix. Our ap-
proach is equivalent to sampling only from the set of
paths that result in the equivalent 2D path produced by
projecting down onto a specific face of the matrix. This
results in a 2D DP problem as described in the Appendix.

Alignment Uncertainty (AU) Plots

As posterior sampling of alignments using MCMC is
a relatively unexplored topic, little work has focused on
methods to summarize such posterior samples in an eas-
ily interpretable form. We describe a method to annotate
a point-estimate Â of the alignment from the posterior
with a measure of uncertainty about the point-estimate.
The method uses a coloring scheme. This scheme marks
each letter with the approximate probability that the let-
ter is homologous to the ancestral residue in its column.
The scheme also marks each gap with the approximate
probability that no letter from the gapped sequence is ho-

mologous to the ancestral residue in the gap’s column.
For the alignment to annotate Â, we use the alignment
from the most probable point in our complete model
space. The ability to annotate individual entries, letters
or gaps, in Â versus entire columns is important be-
cause the number of columns that are completely ho-
mologous necessarily decreases as the number of taxa
in the multiple alignment increases. Although a naive
approach might annotate each entry independently, it
often happens that one subset of taxa aligns poorly with
another subset of taxa, but the sequences in each sub-
set align strongly to each other. Thus we seek a method
of summarizing the posterior which captures these
groupings.

Let f̂ c represent column c in Â. For each column f̂ c
separately, we approximate the posterior probabilities
that individual entries in f̂ c align with the remaining
letters. To accomplish this, we fit a simple phylogeneti-
cally based Poisson model to the posterior sample A(p)

for p = 1, . . . , P . Across all posterior samples, we count
the number of times Ui j that pairs of entries in f̂ c from
taxon i and j are no longer found in the same alignment
column. We consider gaps in f̂ c to reside in the first col-
umn of A(p) that contains a gap in the same row and at
least one other letter of f̂ c in other rows. When no such
column is found, we place the gap in a special column.
We convert the counts of unalignment events into pair-
wise distances Di j by assuming a Poisson model, such
that

Di j = − log
(

1 − Ui j

P

)
. (13)

Under this measure, a long distance between a pair of
entries indicates a high probability that the pair is un-
aligned across the posterior sample. Based on the max-
imum a posteriori (MAP) topology, we then reconstruct
unalignment branch lengths from the pairwise distances
using least-squares (Cavalli-Sforza and Edwards, 1967).
Finally, for each entry in f̂ c , we estimate the probabil-
ity that no unalignment event occurred between the leaf
node corresponding to the entry and the mid-point root
(Farris, 1972). On the AU plot, we assign a color or gray-
scale to each entry based on this probability.

Computation

We developed a new software program in C++ named
BAli-Phy to sample from the joint posterior of our
alignment and phylogeny model. BAli-Phy is avail-
able to interested readers at our Web site (http://www.
biomath.ucla.edu/msuchard/bali-phy/). To draw infer-
ence given the sequence data used in this paper, we used
this software to generate multiple MCMC samples. For
the 5-taxon problems, we discarded the first 1000 sam-
ples from each chain as burn-in and then collected 80,000
to 150,000 further samples for analysis. For the 12-taxon
problem, we discarded the first 5000 samples as burn-in
and collected 40,000 further samples. We ran BAli-Phy
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on standard PC hardware: an AMD Athlon 1.7 GHz
processor with 1 Gb of RAM. Generating posterior sam-
ples required 1 to 8 days of CPU time for our smallest to
largest problems.

RESULTS

Early Branching in the Tree of Life: Resolving the Archaea

Resolution of the early branching order in the Tree
of Life remains controversial because support for these
deep branches is often low and depends on the data and
phylogenetic methods used (Baldauf et al., 1996; Roger
et al., 1999; Brown and Doolittle, 1997). These issues are
exacerbated by the difficulty in aligning distantly re-
lated sequences; estimated phylogenies can be strongly
affected by biased multiple alignments generated using
guide trees (Lake, 1991) and by the common practice of
throwing out ambiguous regions in the alignment that
can decrease resolution (Lee, 2001).

One important question about deep branches in the
Tree of Life that remains unresolved is whether the Ar-
chaea form a monophyletic group (Brown and Doolittle,
1997). Archaea were initially classified as Eubacteria be-
cause both groups lack nuclei, but Woese et al. (1990) later
separated the Archaea from other prokaryotes based on
a phylogeny reconstruction using the 16S rRNA. Woese
et al. (1990) divided all living organisms into the three
domains: Archaea, Bacteria, and Eucarya. This division
has been further supported by research into the molecu-
lar biology of Archaea. Archaea have been found to have
many traits formerly thought to be exclusive to the Bac-
teria, e.g., lack of organelles, and exclusive to the Eukary-
otes, e.g., histone-like proteins and specific transfer RNA
(tRNA) introns (Brown and Doolittle, 1997). Although
initial 16S rRNA analyses suggest that Archaea form a
monophyletic group, some recent analyses based on pro-
teins such as EF-1α/Tu suggest that the Crenarchaeotes
branched separately from the remaining Archaea and are
sister taxa to the Eukaryotes (Rivera and Lake, 1992). This
discrepancy between results presents two alternative hy-
potheses about the early branching order in the Tree of
Life, each represented by a different phylogenetic tree.
The first tree contains a single Archaea clade; we refer to
this tree as the archaeal tree (Fig. 5a). The alternative tree
places the Crenarchaeotes, also called Eocytes after Lake
(1991), as sister taxa to the Eukaryotes; we refer to this tree
as the eocyte tree (Fig. 5b). We apply our methodology of
joint Bayesian estimation of alignment and phylogeny to

FIGURE 5. Two possibilities for early branching in the Tree of Life. (a) The archaeal tree implies that Archaea form a monophyletic group.
(b) The eocyte tree implies that Archaea are paraphyletic (Eocytes and Euryarchaeota) and that the eocyte Archaea are more closely related to
Eukaryotes than to other Archaea.

TABLE 1. Species contributing sequences to either example. The
12 taxa in this table make up the 12-taxon data set for the EF-1α/Tu
example. Taxa marked with a � make up the 5-taxon data set for the 5S
rRNA and EF-1α/Tu examples.

Taxa Domain Order Note

Homo sapiens (HS)� Eukaryotes Metazoa Human beings
Nicotiana tabacum Eukaryotes Plantae Tobacco plant
Euglena gracilis Eukaryotes Protista Photosynthetic

single cell
Giardia lamblia Eukaryotes Diplomonadida Intestinal protist
Sulfolobus Archaea Crenarchaeota High pH

acidocaldarius (SA)� thermophile
Aeropyrum pernix Archaea Crenarchaeota Anaerobic

thermophile
Pyrococcus Archaea Euryarchaeota Thermophile

woesei (PW)�

Halobacterium Archaea Euryarchaeota Methanogen
salinarum (HA)�

Methanococcus vannelli Bacteria Aquificae Thermophile
Thermotoga maritima Bacteria Thermotogales Thermophile
Anacystis nidularans Bacteria Cyanobacteria Photosynthetic,

aquatic
Escherichia coli (EC)� Bacteria Proteobacteria Intestinal

symbiont

this problem in hopes of improving the consistency and
certainty of results.

We consider two different types of molecular se-
quences present throughout the Tree of Life: the short
nucleotide sequences of the 5S rRNA and the longer
amino acid sequences of the EF-1α/Tu protein. For each
type of sequence, we examine data sets containing five
taxa. In addition, we will examine a 12-taxon data set for
EF-1α/Tu, to show that our method can handle a larger
number of taxa if need be. Table 1 lists all 12 taxa used in
our analyses.

Example 1: 5S rRNA

The 5S rRNA is found in Archaea, Bacteria, and Eu-
karyotes and has a highly conserved secondary struc-
ture (Barciszewska et al., 2001). At the present time, only
a few organisms have been found to lack 5S rRNA; these
include Giardia (Edlind and Chakraborty, 1987) and some
mitochondria (Gray et al., 1999). The 5S rRNA forms part
of the large ribosomal subunit and is thought to play a
role in stabilizing that subunit. The 5S rRNAs we exam-
ine vary in length from 120 to 126 nucleotides, and their
sequence identity runs as low as 46%. Phylogenetic stud-
ies have generally focused on much larger rRNAs such as
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the 16S and 25S subunits that contain considerably more
characters. The 5S rRNA has generally been considered
too small to give reliable phylogenetic signals for such
divergent trees as the Tree of Life.

Model and priors.—We use the Hasegawa et al. (1985;
HKY85) model of nucleotide substitution. We fix the nu-
cleotide frequencies in the model to their empirical fre-
quencies, as the posterior frequency distribution rarely
departs considerably from the empirical frequencies (Li
et al., 2000). The HKY85 model is reversible with one free
parameter, κ , that is equal to the ratio of the transition to
transversion rates among nucleotides. Because κ is a ra-
tio, we assume a diffuse log-Normal prior with median
κ = 2 to reflect the belief that transition rates are gener-
ally higher than transversion rates. We describe our prior
on the indel process parameters Λ in “Gap model.” We
further assume a Uniform prior over the 15 topologies
that are possible with five taxa and assume the Exponen-
tial prior on the hyperparameter µ has mean 0.5.

Alignment uncertainty.—Figure 6 shows the AU plot
inferred for the 5S rRNA example. As seen in the fig-
ure, homology is well resolved in the first half of the
alignment, illustrated by the dark background shading.
The second half of the alignment is less well resolved,
especially the alignment of S. acidocaldarius with respect
to the other sequences. In addition, uncertainty in the ex-
act positions of gaps is clearly visible because the letters
on either side of the gaps are shaded lightly, indicating
that their positions are not well resolved. For example,
note that the position of the gap marked with a + in the
H. sapiens sequence is not well resolved. The three let-
ters to the left are more lightly shaded, indicating that
their presence in their respective columns is uncertain.
This is an indication that the gap may move across these
columns.

Phylogeny estimation.—Under the HKY85 model, the
posterior mean of the transition/transversion rate ratio
is 1.90, and the 95% Bayesian credible interval (BCI) is
(1.18, 2.87). The posterior distribution of κ varies only
modestly from its prior, reflecting the lack of information
available given the length of the sequences is small and
the alignment is ambiguous. The posterior mean of log δ

FIGURE 6. Alignment uncertainty plot for the 5S rRNA. Dark shading indicates that an entry is well resolved; light shading indicates that the
position is not well resolved. The first half of the alignment is fairly well resolved, but the second half is much less well resolved. Uncertainty in
the exact position of gaps is visible as light shading in adjacent letters. S. acidocaldarius does not align well with the other sequences.

is −4.98 and its 95% BCI is (−5.76, −4.29). The posterior
mean of log ε is −0.57 and its 95% BCI is (−1.61, −0.18).
This interval corresponds to expected indel lengths rang-
ing from 1.25 to 6.07 and is informative because the range
implies that both the single-residue and multiple-residue
indel regimes are supported by the limited amount of in-
formation available in the data.

Given the data, the MAP topology clusters E. coli with
H. sapiens and H. salinarum with P. woesei with a poste-
rior probability (PP) of only 0.308 (Table 2). No single
topology is strongly supported. Marginal clustering of
E. coli and H. sapiens supports the hypothesis of archaeal
monophyly (PP = 0.553). Clustering of H. salinarum with
P. woesei has PP = 0.494. The support for these partitions
is not high, with a posterior odds ratio of only 1.23 for
the partition with the strongest support. This lack of res-
olution results because much of the alignment is uncer-
tain (Fig. 6) and several near-optimal alignments support
different topologies. As such, we believe that this lack of
topological resolution yields an accurate portrayal of the
limited phylogenetic information in these sequences.

To demonstrate the ability of our methodology to
avoid exaggerated confidence in inferred topologies by
considering multiple alignments, we consider model re-
strictions that bring our methodology more in line with
standard phylogenetic reconstruction techniques. First,
we fix the alignment to that estimated by ClustalW and
rerun our sampler with this constraint. This type of anal-
ysis can be strongly biased towards the guide tree used
by ClustalW because progressive alignment algorithms
insert shared gaps into taxa clustered on the guide tree
when these clusters are aligned as a group against other
clusters. These shared gaps are interpreted by the joint
model as strong evidence for common descent because
indels are less frequent than substitutions. To avoid this
extreme bias towards the guide tree, we also consider the
fixed ClustalW alignment under the traditional Bayesian
phylogenetic model described in Equation 2 and imple-
mented in software such as BAMBE and MrBayes (Larget
and Simon, 1999; Huelsenbeck and Ronquist, 2001). As
opposed to the joint model introduced in Equation 4,
which uses information in shared gaps, the traditional
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TABLE 2. Support for the most probable 5-taxon 5S rRNA topologies and partitions. Columns report the posterior probability (PP) and log10
odds (LOD) with their 95% Bayesian credible interval (BCI) in favor of each hypothesis under three different models. These models are the joint
estimation model presented in this paper (JE), a joint model constrained to a fixed alignment (Indels), and a traditional model based on a fixed
alignment (NoIndels). Fixed alignments are estimated using ClustalW. Although alignments are fixed, the second model does make use of indel
information while inferring the phylogeny, whereas the latter model does not. Taxa abbreviations are given in Table 1 and BCIs are estimated
using a block bootstrap (Suchard et al., 2003b).

JE Indels NoIndels

Topologies and partitions PP LOD 95% BCI PP LOD 95% BCI PP LOD 95% BCI

((EC,HS),(SA,(PW,HA))) 0.308 −0.35 (−0.38, −0.32) 0.996 +2.38 (+2.33, +2.43) 0.172 −0.68 (−0.69, −0.67)
((EC,HS),((SA,PW),HA)) 0.208 −0.58 (−0.63, −0.54) 0.002 −2.71 (−2.77, −2.65) 0.700 +0.37 (+0.36, +0.38)
(EC,((HS,SA),(PW,HA))) 0.120 −0.86 (−0.90, −0.83) 0.001 −2.89 (−3.02, −2.80) <0.001 −4.88 < −4.70
((EC,PW),((SA,HS),HA)) 0.088 −1.02 (−1.08, −0.97) <0.001 <−5.17 <0.001 <−5.17
((EC,SA),(HS,(PW,HA))) 0.066 −1.15 (−1.21, −1.10) 0.001 −3.12 (−3.30, −3.11) <0.001 −4.03 (−4.40, −3.86)
((EC,HS),(PW,(SA,HA))) 0.037 −1.42 (−1.47, −1.37) <0.001 −3.47 (−3.62, −3.37) 0.127 −0.84 (−0.84, −0.83)
EC,HS | HA,PW,SA 0.553 +0.09 (+0.06, +0.13) 0.998 +2.72 (+2.64, +2.82) >0.999 +3.78 (+3.50, +4.06)
EC,HS,SA | PW,HA 0.494 −0.01 (−0.04, +0.02) 0.998 +2.64 (+2.59, +2.70) 0.173 −0.68 (−0.69, −0.67)

model gains information about topologies only from sub-
stitutions and ignores information in shared gaps.

The first restricted model supports the same MAP
topology as the full joint model, while the second
restricted model supports a different MAP topology
(Table 2). Unlike the joint model, the first restricted model
strongly supports its MAP topology (PP = 0.996), which
is the same as the topology of the guide tree used by
ClustalW in its estimate of the multiple alignment. This
high PP supports the hypothesis that the use of infor-
mation in shared gaps for inferring phylogeny is prob-
lematic when based on multiple alignments generated
using progressive alignment. Although the second re-
stricted model does not support a single topology very
strongly, it does support the marginal clustering of E.
coli and H. sapiens with a PP > 0.999. We note that this
clustering occurs in the guide tree and is evidence of
bias. These findings illustrate that short sequences can
indeed yield strong posterior support for specific parti-
tions of taxa, but that this support can almost entirely re-
sult from alignment bias when the alignment signal is not
strong.

Example 2: EF-1α/Tu

For our second example, we turn to EF-1α/Tu. EF-
1α is a highly conserved protein found in Eukaryotes,
Archaea, and Bacteria where it is called EF-Tu. It is a
monomeric G protein, and its functional role is to load
tRNAs onto the ribosome during translation. The se-
quences we examine vary in length from 394 to 462 amino
acids. This protein is at least 26% conserved between all
12 taxa in our data set. This value is near the threshold
of 20% to 25% conservation below which homology be-
comes difficult to detect (Rost, 1999). Other researchers
have attempted to make inferences about the Tree of Life
based on EF-1α/Tu (Rivera and Lake, 1992; Baldauf et al.,
1996; Roger et al., 1999).

Model and priors.—We assume a Uniform prior over
all possible topologies for 5 or 12 taxa, depending on
the data set examined. Our priors on branch lengths and
alignments remain as described in the previous 5S rRNA
example. We use the Whelan and Goldman (2000; WAG)

substitution model, a reversible amino acid model esti-
mated from many proteins. After fixing the amino acid
frequencies to their empirical frequencies, there are no
free parameters in WAG model.

We also extend the basic substitution process by in-
troducing rate heterogeneity across sites (Yang, 1996).
Specifically, we incorporate both an invariant-sites (INV)
approach (Adachi and Hasegawa, 1995) and model rate
variation in the remaining sites according to a Gamma
distribution (Yang, 1994). We approximate the Gamma
distribution (�4) using four bins of equal probability.
These rate variation models are standardly employed
in traditional phylogenetic reconstruction, but have not
previously been invoked during the alignment process.
We assume a Beta prior on the fraction of invariant sites
with a mode at 0.05 and 95% of its mass less than 0.20.
We further characterize the Gamma distribution by its
coefficient of variation α and place a diffuse Double-
Exponential prior on log α.

Alignment uncertainty.—The AU plot for the EF-1α/Tu
alignment is presented in Figure 7. Most of the alignment
is shown with a dark background indicating that the
alignment is well resolved under our model. Note that
most of the uncertainty comes from the weak alignment
between the E. coli sequence and the other sequences.
The E. coli sequence is much shorter than the other se-
quences and is more distantly related to the others than
they are to each other. The distant relationship between
E. coli and the other sequences decreases the alignment
signal; the alignment uncertainty is further increased by
the substantial number of gaps that must be introduced
to account for the length difference in the sequences. For
example, in the first row in Figure 7, there is an ambigu-
ous section; this section is ambiguous because the posi-
tion of the E. coli sequence may be aligned in multiple
near-optimal ways.

We also note that several shared insertions are de-
picted in Figure 7. H. sapiens and S. acidocaldarius share
a 7 to 10 amino acid insertion marked +. This inser-
tion has been previously reported (Rivera and Lake,
1992). Although the exact size of this insertion is un-
certain, its presence is highly supported, given the dark
shading of the seven amino acids in the interior of the
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FIGURE 7. Alignment uncertainty plot for EF-1α/Tu. Well-resolved entries have a dark background, whereas less well-resolved entries are
given a light background. Three shared insertions are present in this alignment: the 10–amino acid insertion in H. sapiens and S. acidocaldarius
marked with +, the 2–amino acid insertion in the same species marked with ∗, and the 3–amino acid insertion in P. woesei and E. coli marked
with !. The first and last insertions have uncertain size and location as the lightly shaded adjacent letters indicate.

insertion. H. sapiens and S. acidocaldarius also share a
2–amino acid insertion marked *. Finally, E. coli and P.
woesei share a 3–amino acid insertion marked ! whose
presence is not as highly supported. The exact loca-
tion and length of this last insertion remains the most
variable.

Phylogeny estimation.—The posterior mean of log δ for
the 5-taxon data set is −5.38 and its BCI is (−5.80, −4.99).
The probability of a gap along a branch is only about
50% higher in the 5S rRNA example than here. How-
ever, the posterior mean of log ε is −0.19 with a BCI of
(−0.30, −0.10), signifying that the expected gap length
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FIGURE 8. MAP topologies for EF-1α/Tu 5- and 12-taxon data sets. Reported branch lengths are posterior means. The 12-taxon tree (b) is
consistent with the 5-taxon tree (a). Both trees support the eocyte hypothesis. Both trees also place P. woesei closer to the root and in a separate
clade from H. salinarum.

(a) (b)

is longer than for the 5S rRNA and a model that can
generate multiple-residue indels is strongly preferred.
Substitution models with rate heterogeneity give very
similar estimates. For the 12-taxon example, log δ has a
posterior mean of −5.91 and log ε has a posterior mean
of −0.25. As expected, log δ is slightly smaller for the 12-
taxon data set, because branches are shorter (posterior
mean of µ: 0.200 vs 0.348). For the same reason, gaps
tend to be shorter, although the difference between ex-
amples is not as pronounced.

The MAP topology for the 5-taxon data set is drawn
in Figure 8a. In the topology, H. sapiens and S. acidocal-
darius are nearest neighbors with PP > 0.999. Thus, this
data set strongly supports the eocyte hypothesis under
our model. Part of this strong support stems from our
methodology’s ability to use the information from the
10–amino acid insertion shared by H. sapiens and S. aci-
docaldarius (Fig. 7) to support the clustering of these two
taxa. In addition, P. woesei is not grouped with H. sali-
narum on the MAP topology, as would be expected if the
remaining Archaea were monophyletic. Instead, P. woe-
sei is grouped with E. coli with PP = 0.974 (0.964–0.983,
95% BCI). This grouping is supported by the common in-
sertion in E. coli and P. woesei marked with ! in Figure 7.
Our findings for this gene imply that the Archaea may
have branched off independently several times and are
polyphyletic. However, we note that this finding is de-
pendent on the rooting of the Eukaryote-Archaea subtree
by the Eubacteria outgroup tree and that a more flexible
substitution model may be necessary to accurately han-
dle such questions (Phillipe and Forterre, 1999; Van de
Peer et al., 2000).

Incorporating both rate heterogeneity extensions leads
to three additional models: INV, �4 and INV+�4. These
three models have 1, 1, and 2 additional free parame-
ters, respectively. Using an importance sampling estima-
tor (Newton and Raftery, 1994; Suchard et al., 2003a),
we calculate that all extensions significantly increase
the marginal likelihood of the data, with the INV+�4
model leading to the most improvement of roughly 19
log units over a model without rate variation. Under the
INV+�4 model, posterior support for clustering E. coli

with P. woesei rises to 0.996 (0.992–0.999). This equates to
an increase in the odds ratio from 37.5 to 249.0, providing
further support for polyphyly in this gene.

Figure 8b shows the MAP topology for the 12-taxon
data set. The topology here is consistent with the MAP
topology for the 5-taxon data set and retains similarly
high support with a PP > 0.999. The only observed un-
certainty lies in the placement of P. woesei in a separate
clade from other Euryarchaeota. This branching is con-
sistent with the placement of the Thermococcales in EF-
1α/Tu phylogenies reconstructed by Keeling et al. (1998).
We note also that, in the MAP topology, E. gracilis finds
itself in the same clade as plants, as suggested by Van
de Peer et al. (2000). Finally, the MAP topology places
G. lamblia as an early branching Eukaryote, consistent
with previous studies (Keeling et al., 1998; Baldauf et al.,
1996).

Convergence and Efficiency

When estimating posterior probabilities via MCMC
sampling, it is common practice to throw out samples
from the beginning of the chain. By discarding this
burn-in period, we ignore initial samples that tend to
be correlated with the starting point of the chain and
not representative of the probability distribution of the
model we are simulating. A chain with a smaller burn-in
period requires less computation time to produce accu-
rate estimates of the posterior distribution of parameters
such as the alignment A, the tree (τ, T), the substitution
parameters Θ, and the indel parameters Λ. We show that
our MCMC algorithm converges to its equilibrium dis-
tribution more quickly than is possible given previously
available MCMC transition kernels. This speed-up al-
lows us to start from randomly chosen alignments and
trees, instead of starting from a position estimated us-
ing other software such as ClustalW. In addition, if two
successive samples from the MCMC chain are highly cor-
related, then one requires a large number of samples and,
therefore, a large amount of computer time in order to
produce accurate estimates from the samples remaining
after the burn-in period. We show that the number of
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(a) (b)

FIGURE 9. Enabling the 3-way sampling MCMC transition kernel decreases burn-in time and autocorrelation. (a) The log probability of the
data and parameters takes greater than 3500 iterations to converge to its equilibrium distribution when 3-way sampling is disabled. (b) The log
probability converges to its equilibrium distribution within about 50 iterations when 3-way sampling is enabled. Thus, 3-way sampling decreases
burn-in time by a factor of at least 70 for the 12-taxon EF-1α/Tu data set used here. Time-series for 10 runs are shown in each plot.

samples obtained from our MCMC algorithm are suffi-
cient to yield accurate estimates.

Decreased burn-in time.—In our MCMC algorithm, we
extend the work of Holmes and Bruno (2001) in sam-
pling alignments by adding a new transition kernel. This
new routine allows a section of sequence with ques-
tionable homology to be unaligned or realigned to a
section of another sequence without going through an
unfavorable intermediate that temporarily introduces
an extra gap. MCMC chains that include this transi-
tion kernel have substantially decreased burn-in times
and less autocorrelation. We plot the log probability
of the data and parameters for 3500 iterations of 10
chains without the new transition kernel (Fig. 9a) and
for 350 iterations of 10 chains with the new kernel
(Fig. 9b). The chains that include the new kernel re-
quire at most 50 iterations to reach equilibrium values.
However, the chains that do not include this kernel take
greater than 3500 iterations to converge to equilibrium
values of the log probability, at least 70 times more itera-
tions. Because the chains that contain the new transition
kernel run only about 25% slower, using this transition
kernel provides substantial improvement in computa-
tional efficiency. Further inspection of the samples from
the slowly converging chains confirms our hypothesis
that the low log probabilities and high correlation ob-
served in the chains in Figure 9a result from alignments
containing unaligned homologous regions (data not
shown).

Convergence and mixing.—To assess convergence for
continuous parameters, we compute Gelman-Rubin R
statistics based on 10 chains for sampled leaf branch
lengths and substitution and indel parameters. Internal
branch lengths do not necessarily retain definition across
topologies and can not be used. For our largest example
involving the EF-1α 12-taxon data set, all statistics are
<1.01, suggesting that each chain converged to the same
distribution. To assess mixing, we estimate the number
of effectively independent samples based on parameter
autocorrelation. Effective sample sizes range from 2874
to 16,876 depending on the parameter for chains of length
40,000. Further, we report credible intervals for estimates
of PPs and log odds based on a block bootstrap (Suchard

et al., 2003b) (Table 2). These intervals give a quantitative
measure of the accuracies of the PPs we report and ac-
count for the effects of long-distance correlation between
all parameters, including discrete parameters such as the
topology and the alignment.

REMARKS

In this paper, we present a Bayesian method of simulta-
neously estimating alignments and phylogenies directly
from unaligned sequence data. The joint estimation ap-
proach increases the resolving power of the data by mak-
ing use of information in shared indels while avoiding
bias and overconfidence in inferred topologies result-
ing from inaccurate alignments. In developing our ap-
proach, we construct an MCMC algorithm to sample
from the joint posterior distribution of alignments and
phylogenies. The algorithm introduces a new transition
kernel that significantly improves the speed and quality
of posterior alignment samples. We describe a method
to summarize these posterior samples into a single plot
that clearly identifies regions of alignment interest and
ambiguity.

Simultaneous construction of alignment and phy-
logeny enables one to incorporate a more realistic indel
model than is traditionally used in alignment reconstruc-
tion algorithms. The availability of an internal estimate
of the tree during alignment avoids overcounting indels
that are shared between taxa by common descent. Fur-
thermore, the availability of the tree allows for a more
accurate alignment model by counting indel events in-
stead of counting gaps. Alignment models based on gap
counting are biased against insertions in only one or a few
taxa, because these insertions are counted as indepen-
dent gaps in all other taxa. Finally, the joint model uses
shared indels in multiple taxa as evidence for common
descent in phylogenetic reconstruction. This information
appears important in the EF-1α/Tu example. Account-
ing for shared indels contributes to the strong posterior
support of the eocyte tree. The ability to incorporate the
evidence of shared indels into a statistical framework
allows such evidence to be properly weighed against ev-
idence of shared substitutions.
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Joint estimation further avoids bias toward particu-
lar phylogenies as well as exaggerated confidence in in-
ferred phylogenies. Although accurate point-estimates
of phylogenies are important, knowledge about the
variability of estimates produced is equally important
in verifying phylogenetic hypotheses. The estimation
framework presented in this paper improves accuracy
by decreasing bias towards the external guide trees used
in progressive alignment. These external guide trees are
usually estimated using very simple models and meth-
ods that do not adequately capture the rich informa-
tion in the data. In addition, operating in a Bayesian
framework allows us to consider all possible alignments
weighted by their posterior probabilities, such that all
near-optimal alignments are taken into account automat-
ically. Both of these improvements come to light in the
analysis of the 5S rRNA example. In this example, failure
to consider near-optimal alignments produces exagger-
ated support for the inferred tree. Also, the (H. sapiens,
E. coli) partition that receives increased support when us-
ing a sequential approach already exists in the ClustalW
guide tree, indicating bias toward this tree.

To summarize the posterior distribution of alignments,
we introduce AU (pronounced “gold”) plots. AU plots
consist of an alignment point-estimate annotated to in-
dicate alignment variability. These plots are highlighted
in Figures 6 and 7. AU plots are constructed from a
sample of alignments drawn from their posterior dis-
tribution. To produce the plots, we assume a simplis-
tic Poisson model over the posterior sample. The model
approximates the probability that each letter in the point-
estimate is aligned to the ancestral residue of the let-
ter’s depicted column. This measure prevents AU plots
from being sensitive to the addition of duplicate or near-
duplicate sequences; such sequences are not necessarily
shown as well aligned globally just because a larger frac-
tion of sequences aligns closely with them. For example,
if one subset of taxa aligns weakly to another subset, but
the sequences within each subset align strongly to each
other, both subsets will be depicted as weakly aligned un-
less the root taxon lies within one subset. In this case, the
subset containing the root taxon will be shown as well-
aligned, and the other subset will be shown as weakly
aligned. In combination with our MCMC algorithm that
produces samples from the posterior distribution, these
plots provide a valuable tool for assessing alignment
ambiguity.

Locating ambiguous regions within sequence align-
ments is an important process for most phylogenetic
reconstruction methods, but remains a difficult task.
Waterman et al. (1992) and Gatesy et al. (1993) have sug-
gested varying the gap opening and extension penal-
ties well beyond supported values during alignment and
then marking regions that change as uncertain. This ap-
proach is able to find regions of the alignment that are so
greatly homologous that they remain aligned under un-
likely gap models, but does not characterize the range
of ambiguity under one set of alignment parameters.
Lutzoni et al. (2000) have developed a method for delim-
iting ambiguous regions based on sliding gaps laterally

until alignment quality decreases. Because the MCMC
approach considers all possible alignments, it has a
broader scope than the Lutzoni et al. (2000) algorithm.
In addition, we estimate indel parameters instead of fix-
ing them to predefined values. Currently, we are forced
to employ diffuse priors on these parameters because
biologically based informative priors are not yet avail-
able. We consider the development of such priors to be
important future work.

Although AU plots yield a gestalt impression of which
parts of an alignment estimate are certain, they are not
intended to fully summarize the posterior distribution
of alignments. One approach to more fully visualize
this distribution is to represent individual alignment
samples as connected, increasing paths through an n-
dimensional lattice (Waterman, 1995), where n is the
number of aligned sequences. This approach then plots
the entire distribution using histograms on an alignment
path graph. Zhu et al. (1998) provide such an example
for a pairwise alignment. Unlike AU plots that annotate
only a single alignment, it is possible to plot all posterior
realizations simultaneously with their posterior support
encoded either by color or histogram height. One poten-
tial drawback to the alignment path graph approach is
its dimensionality. For small n, it is possible to create all(n

2

)
marginal pairwise alignments for plotting on paper.

For larger n, the number of pairs increases rapidly and
higher dimensional visualization techniques become
necessary.

Although we garner many strengths from the joint
estimation model, there exist several limitations to our
implementation. For example, the indel process we de-
scribe uses the same alignment parameters in the pair-
wise alignment along every branch. This contrasts with
ClustalW. ClustalW varies gap penalties on branches
by its length determined by the substitution model
(Thompson et al., 1994). Making gap penalties a function
of branch length favors indels on longer branches and is
biologically justifiable (Thorne et al., 1992). To extend our
joint estimation model such that each branch b has a dif-
ferent pairwise alignment distribution ν(Tb), it is neces-
sary for all the ν(Tb) to induce the same sequence length
distributions. Although the TKF models have this prop-
erty at equilibrium, it remains an open problem to make
the alignment distribution used in this paper depend on
branch length while keeping the sequence length distri-
bution constant. On the other hand, to fit the TKF mod-
els into our joint estimation framework, it becomes nec-
essary to define a reversal operator r (·) that takes any
pairwise alignment A(b) into another pairwise alignment
r (A(b)) with the same homology structure and the first
and second sequences interchanged. The probability of
the reversed pairwise alignment Pν(r (A(b))) must be iden-
tical to the probability of the original pairwise alignment
Pν(A(b)). When ν is based on a symmetric pair-HMM like
the one in this paper, then r (·) can be computed simply by
interchanging the first and second sequences. However,
when ν comes from a TKF1 model, r (·) is more compli-
cated (Holmes and Bruno, 2001) and no r (·) has been
published for the TKF2 model.
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Another possible modeling extension counts indels at
the beginning and end of a pairwise alignment as more
probable than those in the interior, as is expected when
sequence lengths differ (Gribskov and Devereux, 1991).
However, even without these extensions, our methodol-
ogy provides a solid starting point, producing reasonable
estimates of both alignments and phylogenies simulta-
neously, as demonstrated through the 5S rRNA and EF-
1α/Tu examples.
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APPENDIX

Here, we describe algorithms for MCMC sampling alignments based
on DP. We begin with a general approach to sampling the entire align-
ment simultaneously. We then restrict our attention to sampling the
three pairwise alignments that share a common internal node and the
five pairwise alignments on or adjacent to one internal branch. For these
latter procedures, we discuss how to improve computational efficiency
by making additional constraints in the DP matrix.

Basic Algorithm
To sample from the posterior distribution of a multiple alignment

A given the data Y, the tree (τ, T), substitution model parameters
Θ and indel process parameters Λ, we construct a multiple-HMM
whose paths correspond one-to-one to multiple alignments. We can
efficiently Gibbs sample paths from the multiple-HMM using the
forward-backward algorithm (Scott, 2002) based on DP. As the dis-
tribution of paths under the multiple-HMM given in Equation 11
varies slightly from the distribution over A that we seek in Equa-
tion 10, we first draw a new sample path from the multiple-HMM
and then perform an accept-reject step on the corresponding mul-
tiple alignment to control for these differences. Rejections are quite
rare.

Multiple-HMM.—We begin construction of the multiple-HMM by
considering its set of emission states. Each state s in this set emits either
an observed letter or gap for each of the n sequences at the external
nodes and either a Felsenstein wildcard or gap for each of the n − 2
internal nodes of the phylogeny. Each state therefore corresponds to a
column in a multiple alignment and is characterized by whether the
state contains a residue (+) or gap (−) at each node. For example, the
state of the first column in the alignment in Figure 1 is (+,+,–,–,+,–).
Not all combinations of residues and gaps are allowed. Any state that
places a gap at a node between two residues is forbidden, because these
states imply that an inserted residue is homologous to a previously
deleted residue. The emission probabilities for the residues in a state
are equal to their phylogenetic column likelihood and are given by the
substitution model described in Methods.

There exists a natural relationship between the multiple alignment
A and the pairwise alignments A(b) which comprise it. Columns in a
pairwise alignment A(b) correspond to one of three states in the pair-
HMM that generated the column: the M state (+,+), the G1 state (−,+)
or the G2 state (+,−). The state of each column in A(b) then projects to
the column in A that contains the same residues, carrying with it its
emission properties. For example, the fourth column of A15 in Figure 1
is in the M state and corresponds to the fifth column of the multiple
alignment. However, columns of A that do not emit any residues in
a pairwise alignment A(b) do not correspond to any column of A(b).
The emission properties of such columns are the same as (−,−) when
projected down to A(b) and we say that A(b) is not active in such columns.
For example, column 3 of A in Figure 1 emits no residues in either
sequence 1 or sequence 5 and does not correspond to any column of A15.

We augment each state s in the multiple-HMM with additional val-
ues m(s, b) for each branch b. Values m(s, b) keep track of the last active
state of each pairwise alignment A(b). If A(b) is active in s, then m(s, b)
is simply the state of A(b) in s. However, if A(b) is not active, then the
value of m(s, b) carries forward from the previous column. To accom-
plish this, we choose the transition matrix for the multiple-HMM to
assign probability 0 to paths which do not set m(s, b) to the last active
state of A(b). As an example, consider the third column of the alignment
in Figure 1. The alignment A15 is not active in this column, but it was
active in the previous column with state M. So, the last active state for
A15 is M in column 3.

We also impose a constraint on paths to ensure that their correspon-
dence to multiple-alignments is one-to-one. If, for any two adjacent
states in a path, there is a pairwise alignment A(b) that is active in both
states, then interchanging the state order changes at least one of the
pairwise alignments. However, if this is not the case, then interchang-
ing the state order does not change any of the pairwise alignments and,
thus, does not change the multiple alignment. In this situation, we say
that the two states are not strictly ordered with respect to one another.
This means that two or more paths through the multiple-HMM map to
the same multiple alignment. To impose a one-to-one correspondence,
for any two not strictly ordered states s1 and s2, we forbid the transi-
tion s1 → s2 unless s1 ≤ s2 according to some external ordering that we
choose. Our choice must be a total ordering over all states to provide
a single best order for adjacent sets of more than two not strictly or-
dered states. Paths in which all not strictly ordered states follow the
total ordering are considered legal.

Given this description of the states, we now propose a transition
kernel. We define L(s1, s2) = 1 if s1 and s2 are legally ordered or 0 oth-
erwise. We define s(b) = 1 if A(b) is active in s or 0 otherwise. We define
the transition matrix P = {Pi, j } for the multiple alignment in terms of
the transition matrix Q = {Qi, j } for the pairwise alignments, such that

Ps1 ,s2 = L(s1, s2) ×
B∏

b=1

Qs2(b)
m(s1 ,b),m(s2 ,b)

×
B∏

b=1

1{m(s1, b) = m(s2, b)}(1−s2(b)). (14)

The first term assigns probability 0 to all illegal paths. The exponent
s2(b) in the second term simply removes terms from the product when
A(b) is not active in s2 and leaves other terms unchanged. Thus, the
second term contributes the transition probability from the previous
active state m(s1, b) to the current state m(s2, b) for all active pairwise
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alignments A(b) in s2. The last term enforces the condition that inactive
pairwise alignments in s2 carry forward their last active state.

To see that transition matrix P yields the desired distribution on
multiple alignments, consider a path π = (π0, . . . , πC+1) through the
multiple-HMM corresponding to an alignment A with C columns. We
note that ifπ correctly records the last active state of pairwise alignment
A(b) in each state πi then

Pν (A(b)) =
C+1∏
i=1

Qπi (b)
m(πi−1 ,b),m(πi ,b). (15)

If the path π is legal as well, then

P(π) =
C+1∏
i=1

Pπi−1 ,πi =
C+1∏
i=1

B∏
b

Qπi (b)
m(πi−1 ,b),m(πi ,b) =

B∏
b

C+1∏
i=1

Qπi (b)
m(πi−1 ,b),m(πi ,b)

=
B∏
b

Pν (A(b)), (16)

where Pν (A(b)) is the distribution induced by the pair-HMM.
Computing issues.—In addition to the set of emitting states described

above, the multiple-HMM contains a start, end, and absorbing state.
We choose the M state as the starting position for each pair-HMM
(Durbin et al., 1998; Metzler, 2003). This induces the start state of the
multiple-HMM to equal the state in which all nodes are present. The
end state occurs when all pair-HMMs become inactive. The addition of
an absorbing state is a formal device to aid in normalizing the multiple-
HMM. The state accounts for our restriction that pairwise alignments
on adjacent branches must agree on the length of the sequence at their
shared node.

In calculating the emission probabilities for the multiple-HMM, we
sum out all Felsenstein wildcards at the internal nodes using the peeling
algorithm. This procedure results in the emission of at most n observed
leaf sequence letters, substantially reducing the dimension of the DP
matrix. This integration can produce additional silent states. These oc-
cur when the multiple-HMM emits only in residues at internal nodes,
as these residues have been summed out. Sampling algorithms using
DP require that the HMM have no cycles of silent states. We overcome
this difficulty by blocking cycles of silent states into a single silent-
block state. We Gibbs sample a path from the blocked HMM using the
forward-backward algorithm on the DP matrix and then re-expand the
path by sampling the lengths of the silent blocks given the blocked path.

Metropolis-Hastings acceptance probabilities.—We present here a
derivation of the acceptance probabilities necessary for the accept-reject
steps. Let ρ12 be the probability of proposing a new multiple alignment
A′′ given the current multiple alignment A′, the data Y and all other
modeling parameters τ , T, Θ, and Λ and let ρ21 be the probability of the
reverse proposal. Using the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970), the acceptance probabilityα12 for moving
from A′ to A′′ is

α12 = min

{
P(A′′ | Y, τ, T, Θ, Λ) × ρ21

P(A′ | Y, τ, T, Θ, Λ) × ρ12
, 1

}
. (17)

By dividing the two priors defined in Equations 10 and 11, we de-
termine that Gibbs sampling yields

ρ12 = 1
K

× P(A′′ | Y, τ, T, Θ, Λ) ×
∏

i∈I

φ(|a ′′
i |)2, and

ρ21 = 1
K

× P(A′ | Y, τ, T, Θ, Λ) ×
∏

i∈I

φ(|a ′
i |)2, (18)

where |a ′
i | and |a ′′

i | are the lengths ascribed to the internal nodes of τ

by A′ and A′′ respectively. Substituting Equation 18 into Equation 17

results in

α12 = min

{ ∏
i∈I

φ(|a ′
i |)2∏

i∈I
φ(|a ′′

i |)2
, 1

}
. (19)

The acceptance probability (19) reduces down to that given in (12) when
resampling the alignments associated with a NNI topology proposal
in which the sequence lengths of only two nodes possibly change.

Sampling a Subset of the Pairwise Alignments
The algorithm provided above can sample the entire multiple align-

ment A simultaneously. However, for all but the smallest number of
taxa, it is computationally prohibitive to construct the necessary DP
matrix. As an alternative, we recommend sampling A through a series
of local proposals, each updating a subset of the pairwise alignments
along the branches of 3- or 4-taxon subtrees within τ . When sampling
the local alignment along a subtree, the only change required to the
basic algorithm concerns how the data Y specify the subtree leaf se-
quences emitted by the multiple-HMM. A leaf node in the subtree may
correspond to an internal node of τ . In this case, the sequence associ-
ated with the new leaf node has a fixed length, but the letters emitted
at each site are unobserved. The conditional probability that each site
in the sequence emits each possible letter in the alphabet is determined
by applying the peeling algorithm to the internal node’s descendants
in the full tree.

Constrained sampling.—We propose a constrained procedure under
which it is computationally practical to sample a subset of the three
pairwise alignments on 3-taxon subtrees (3-way sampling) and to sam-
ple a subset of the five pairwise alignments on 4-taxon subtrees (5-
way sampling). Using this procedure, the pairwise alignments between
some leaf sequences in the subtree are fixed. We require both that match
states and gaps are preserved between sequences whose alignments are
fixed and that the order of columns in the pairwise alignment remains
unaltered when the columns are not strictly ordered. For 3-way sam-
pling, we fix the alignment between two of the three leaf sequences in
the subtree and, for 5-way sampling, we fix the alignment between all
pairs of leaf sequences in the subtree.

Under 3-way sampling, paths through the 3D DP matrix visit grid
points {i, j, k}. Our constraint requires that the projection of paths into
the subspace i = 0 remains constant, equivalent to fixing the align-
ment between the second and third sequences. After projection, the re-
maining variable subspace can be uniquely represented by grid points
{i, c( j, k)} where c( j, k) is the column in the pairwise alignment of se-
quences 2 and 3 that contains residue j of sequence 2 aligned to residue
k of sequence 3. The resulting DP matrix is 2D and can be Gibbs sam-
pled from in O(C2). Although the dimensionality of this constrained
DP problem is the same as sampling a single pairwise alignment, the
number of possible states at each grid point is larger because we must
also consider whether the internal node in the subtree emits a residue or
not. The additional states increase computational space requirements
and run-time compared to sampling a single pairwise alignment. How-
ever, the increased space and time enable us to sample both a pairwise
alignment and the sequence at the internal node. This substantially im-
proves the MCMC efficiency of the sampler without having to resort
to unconstrained sampling at O(C3).

We employ 5-way sampling in conjunction with NNI proposals
on 4-taxon subtrees. Under 5-way sampling, all pairwise alignments
between the leaf nodes are fixed. As a result, the path through the DP
matrix is held constant, whereas the realized state at each grid point
may change, generating a 1D DP matrix. This procedure samples from
all possibilities of emitting or not emitting a residue for the sequences
at both internal nodes in each column of the multiple alignment. The
procedure may also introduce or remove columns that contain only
residues in the internal sequences of the subtree, thus changing the
length of the multiple alignment. We note that if we instead fixed the
pairwise alignments between only three of the four leaf sequences,
this would allow us to simultaneously sample the alignment of one
of the leaf sequences and propose an NNI topology change across
the internal branch. Simultaneously proposing such alignment and
topology updates may further improve MCMC mixing and offers a
direction for future research.


